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NONLINEAR FILTRATION IN CRACKED POROUS MATERIALS 

Yu. A. Buevich and V. S. Nustrov UDC 532.546 

Stationary filtration to a well and to a gallery in a cracked porous medium is 
investigated with the strong dependence of structural-mechanical properties of 
the medium on the pressure of the filtering fluid being taken into account. 

Motion in cracked-porous materials is usually described on the basis of a continual 
model within whose framework the material is considered as two coexistent fictitious porous 
media; filtration therein corresponds to independent progress over the porous modules and 
over the system of cracks in the presence of mutual fluid transfer [i]. The equations for 
the unknown mean pressures in the cracks and in the modules are obtained in [2]; they are 
analogous in structure to the heat-conduction equations in a heterogeneous medium (see [3-5], 
for example). 

However, in contrast to the majority of heat-conduction processes, a strong nonlinear de- 
pendence of the cracked porosity and permeability (analogous to the specific heat and the heat 
conduction in the corresponding thermal problem) on the pressure within the cracks is charac- 
teristic for filtration processes in cracked and cracked porous media. This pressure depend- 
ence results in the appearance of a number of qualitatively new effects (finiteness of the 
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pressure pulse propagation rate, origination of zones with fully closed cracks, etc.), which 
influence the observed characteristic of the filtration processes quite strongly. Effects 
of such kind were apparently first examined in [6] in application to the problem of strong 
thermal wave propagation due to nonlinear radiant heat conduction in the initial stage of an 
explosion in a gas, and in [7] in application to problems of filtering a compressible gas in 
a porous material with invariant properties. 

In the case under consideration, in contrast to [7], the nonlinearity is not associated 
with the compressibility of the filtering gas but with the dependence of the structural-- 
mechanical properties of the material on its state of stress and the pressure in the cracks. 
Moreover, filtration is performed not by a single macroscopic homogeneous medium but by mod- 
ules and by cracks simultaneously. The presence of transfer between modules and cracks by 
the fluid results in a certain modification of the effects mentioned as compared with their 
appearances in "single-phase" processes. These processes are considered below only in an 
example of stationary problems on filtration to a single perfect well or to a gallery. 

The system of equations describing stationary filtration in domains wh~re cracks are 
open has the form [2] 

~v[(P~--~)ipO _~., VP~]+ P2--PI~ O, • P2--P~--O.~ (i) 

The expressions for the effective piezoconductivity coefficients y and ~ and the relaxa- 
tion time T of the process of transfer by a fluid between the cracks and modules are given in 
[2]. The crack permeability is described in (i) by using a scalar function, which corres- 
ponds to filtration in a material of isotropic structure in a state of multilateral compres- 
sion. These same equations describe plane filtration motion also in a material all of whose 
cracks are oriented in the plane of the motion (as is quite usual for sedimentary strata). 
In this case ~ is understood to be the compressive stress normal to this plane. 

In the domain where the cracks are closed, there is filtration only in the modules, de- 
scribable by the standard equation 

• = O. (2 )  

Let us note that the representation about the existence of two filtration zones in 
cracked-porous collectors was indeed introduced earlier (see [8], for example), but equations 
were used here that are, in principle, different from those obtained in [2]. Besides the 
usual boundary conditions on the boundaries of the flow domain, conditions on the equality 
of the pressure p~, the critical magnitude o, and the continuity of the pressure p= and the 
normal component of the flow in the modules, as well as the condition that the flow in the 
cracks vanish on the surface separating the domains with open and closed cracks are imposed 
on the solution of (I) and (2). 

For the axisymmetric problem of filtration to a perfect well we have boundary condi- 
tions in the form 

l 

p ~ = p F = p ~  r = R ;  p F = p o ,  r = r o ;  

( _ _  ']3 dp~ dp~ (3)  
lim P;o ~ dpl = 0, + - r~r, ---~ / dr p2 -- p2, dr dr , Px = a ,  r = r,. 

( f o r  d e f i n i t e n e s s ,  t h e  o r d i n a r y  c o n d i t i o n s  o f  a p r e s s u r e  mode on  t h e  o u t e r  c o n t o u r  r = R and  
t h e  c o n d i t i o n  o f  e q u a l i t y  o f  P2 t o  t h e  c u t t e r  p r e s s u r e  on t h e  w e l l  c o n t o u r  a r e  t a k e n ;  i t  i s  
p o s s i b l e  t o  g i v e  o t h e r  c o n d i t i o n s  a l s o ) .  The  b o u n d a r y  c o n d i t i o n s  f o r  t h e  p r o b l e m  o f  f i l t r a -  
t i o n  t o  a g a l l e r y  h a v e  t h e  same f o r m  b u t  w i t h  t h e  r e p l a c e m e n t  o f  r b y  x and  r e ,  r , ,  and  R 
b y  0 ,  x , ,  and  X. 

L e t  u s  i n t r o d u c e  t h e  d i m e n s i o n l e s s  c h a r a c t e r i s t i c s  

n = , { ~ ,  % } = t p O  ~ �9 

E q u a t i o n s  (1)  a r e  w r i t t e n  i n  t h e  f o r m  
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where 

Ty 1' (5) 

In the case of an influx to the gallery, system (4) has the first integral 

% = >~ + (A N -~ B - - 4 e % ) * t ~ ,  

and the function % satisfies the equation 

ed2%/dq~ _ ~2% = __ U [~o + (An + B - -  4e%)*zq, N, ~-~ N ~ 1. 

For a well we obtain, respectively, 

(6) 

(7) 

% - - ~ + ( A l n N  @ B - - 4 e % ) ~ z  a, (8)  

1 d _/ % - -  %~ % : [~,, n- (A lnrl + B 4e%)*~q, 
N dq (9)  

The solution of (7) and (9) can be constructed by the method of mergeable asymptotic ex- 
pansions [9]. In this case a boundary layer exists near the boundary n = n,. Using the 
boundary conditions (3) we first obtain certain estimates. 

Taking (2) and (6) into account, conditions (3) for a gallery take the form 

A @ B - - 4 s % ( 1 ) =  1, AN, @ B - - @ % ( % )  = 0 ,  

A -  4s (d%/d~l), -- O, (d%/dq) ,  N, -~ ~o = %(N,) ,  
(10) 

where the asterisk at the derivative denotes that it is evaluated for q = ~,. 

Two more constants are added to the arbitrary constants A, B when integrating (7). The 
four constants and the unknown location of the boundary n = q, of the crack closure are de- 
termined from (i0) and the condition for merger of the expansions. 

From (I0) we obtain the equality 

4~ [% (q,)  - -  % (1) - -  (d%/dq) ,  (q ,  - -  1)l = 1. (11)  

The pressure drop in the modules ~2(N,)--~e(1) depends substantially on the closeness of the 
critical value of ~ to pO. For o-+p~ )= o(~) the boundary is n, § i; therefore 
the cracks are closed in the whole domain. For a cracked-porous collector with ~ << 1 it can 
be assumed that the mentioned pressure drop will not be too large; consequently, from (ii), 

(d%/dN) , = o (e-I). (12)  

We then find from (i0) 

= o(1 ) ,  B = o ( e ) ,  n ,  = o(e ) .  

Conditions (3) for a well have the form 

(13) 

B - - 4 ~ % ( 1 ) =  1, A ln~ l ,  + B - - 4 s % ( v , , ) =  0, 
(14) 

A - - 4 e ( d % / d N ) , N ,  =- O, (d~2/dN) , q ,  In ~* q- 9o = ~ 2 ( N , ) ,  
No 

f r o m  w h i c h  t h e  e s t i m a t e s  (12)  and 

A = o ( N , ) ,  B = o ( 1 ) ,  N,  = O(~o)  ( 1 5 )  

follow. Therefore, in the case under consideration, the boundary of crack closure is suffi- 
ciently close to a gallery (well). 

Let us proceed to construct the solution of (7) and (i0). Taking account of (13), we 
set B = Bo~ in (7) and (i0) I then A = 1 from the first condition in (i0). The zeroth ap- 
proximation of the external expansion has the form q)2=~'~-T] 1'/4. 
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Fig. i. Influence of the pressure factor v on the location of the crack closure front: 
i) s = i0-=; 2) i0 -~. 

Fig. 2. Pressure distribution in a collector: i) O. = 0,07; 2) ~. = 0.29; ~ = I0 -2. 

Fig. 3. Dependence of the debit on the face pressure: i) $ = 0.2; 2) 0,5; 3) porous 
collector, 

Setting q = ~ in (7), we obtain the equation 

d ~ 2 1 d ~ - - k  ~ % - - - - k ~ [ ~  4-(A-/~ 4- Bos--4s%)~J~]; 

hence the zeroth approximation of the internal expansion is 

~ 2  : ~ff 4- C1 exp [--  % (~ ,--- ~,)] 4- Ce exp [X ~ - .  ~,)]. 

From the merger condition C2 = 0, and from the last equation in (i0), 

/ 
Ct = (~o - -  #o) I ! 4- 

The composite expansion has the form 

i~Vl. ) - ' .  
8 

~ = Fo 4- rl'/~ ~- (I~o - -  Fa) 1 4- ;L 01 - -  )1,) 
~ ' (16) 

"q, ~ ' , 1 %  I. 

Taking (16) into account, we obtain an equation for the coordinate $ = $, of the crack 
closure boundary from the third condition in (I0) 

Let us estimate the magnitude of the parameter X. In conformity with the examples in 
[8], we take u = 0.6 m2/sec, T = 180 sec for the cracked-porous collector. For R = i00 m 
(half the distance between wells), %2 ~ I0 =. 

In case % >> i we obtain from (17) 

L = 4 ~ (~ -- ~,0), (18) 

which is in agreement with (13). 

It follows from (6) and (16) that ~I<T2 near n = 1 (the overflow from the modules to 
crack) and ~i>~2 near n = ~, (reverse overflow). The expression for the derivative 

4 

characterizes the "blurring" of the crack closure front for ~ # 0. 
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In the case of filtration to a well [Eqs. (9) and (14)], we just select the internal 
variable. According to the second condition in (14), the internal variable is determined 
by the equation In O = f(e, ~), f(0, ~) # 0, where f(e, ~) is a series in certain positive 
powers of e. Hence, the differentiation operator in (9) is 

1 d ~ = (/, expD_2 [' - -  (19)  
d~ 1 dB ~ d~ ~ d~ . '  

whe re  t h e  p r i m e s  d e n o t e  t h e  d e r i v a t i v e s  w i t h  r e s p e c t  t o  r  E x p a n d i n g  t h e  o p e r a t o r  (19)  i n  
a power series in e, we determ~e the first terms in the expansion f(~, ~) from the condi- 
tion of s~plicity of integrating the transfo~ed equation (9). In a zeroth approximation 
the coefficients in (9) should be constant. We obtain 

~ = e x p I ~ + ~ V ~ l ,  ~ @ 0 ,  ~ : @ 0 .  (20)  

In  t h e  z e r o t h  a p p r o x i m a t i o n  (9)  h a s  t h e  f o ~  

Filtration to a well is described by the composite expansion 

% = , u , o +  (1 I n ~ )  ~/4 ( ) ~1 -~ (~0 --  Va) l I- b]1"1 111.T]0 ( ~ , ~] 
', ~q* / (21)  

b : :  ,~,8 -~/2 exp [~1, ~1, -~ ~<~> 1. 

The front of crack closure is determined for ~ >> i by the equation 

In ~1, : In ~io - -  4 e[3~ (~t o - -  ~o). (22) 

The solution of (21) and (22) turns out to be dependent on the parameter 8~ whereupon 
only terms of zeroth order in e will be retained upon compliance with the substitution of 
(20) into (9). It can be shown that the dependence on 8: is weak in (21) and (22). 

Let us consider a simplified model of fluid filtration to a well by neglecting the 
permeability of the modules for n > D,. As e + 0 it follows from (8), (9), and (2) 

( P l =  q92 - t-= ~ta + ( A I n u + B )  ~'a, ~ , ~ 1 ,  

Determining the constants from the boundary conditions 

qh = (P~- = ~ t~ ~1 = 1; q~- : ~o, rl :=: ~o; 

we find 

qD1 = q~- = I-t,~ -I-- (1 - -  In ~lln rl,)~'L '1, ~ 'q -~ 1, 

~ -  ---- ~0 + ( ~ - -  ~o) [In (4,  / ~o)] -i  In ~ . ~o ~ ~ ~ ~,-  

We o b t a i n  t h e  b o u n d a r y  o f  c r a c k  c l o s u r e  f r o m  t h e  e q u a l i t y  o f  t h e  f l o w s  f o r  n = n ,  

In ~], == lnqo[1 ~- 4e (~o - -  ~o)] -i,  

wh i ch  c o r r e s p o n d s  t o  ( 2 2 ) .  

For a gallery we obtain, respectively, 

~1, == 4e ( ~ - - [ % ) [ 1  + 4 e ( ~ -  [%)]-~ ~ 4e ([~,~- P-o) 

(23) 

(24) 

[the last equation agrees with (18)]. 
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The dependence (24) for the crack closure front location on the pressure factor ~ = 
~o -- vo is shown in Fig. i, where the coordinate ~ = 1 -- in ~/in ~o is used. For sufficient- 
ly small ~ the pressure factor influences the boundary location weakly. 

The pressure distribution (23) in the collector is shown in Fig. 2 for two boundary loca- 
tions. The dimensionless pressure p = P/po is plotted along the vertical axis. The zone 

is characterized by a large pressure gradient in the modules [corresponds to (12)]. 
For the pressure in the collector changes more slowly and depends weakly on the posi- 
tion of the boundary ~=~,. 

For Po > o the cracks are open in the whole domain. For the conditions ~l =~== vo at 
= ~o we obtain 

~ = ~ 2 :  Vto+ [(wa--1)lnD/lnNo~+ 1] ~a, N 0 ~ N ~ I .  (25) 

L e t  us  c l a r i f y  t h e  d e p e n d e n c e  o f  t h e  d e b i t  on t h e  f a c e  p r e s s u r e  Po.  T a k i n g  a c c o u n t  o f  ( 2 3 ) -  
( 2 5 ) ,  t h e  w e l l  d e b i t  i s  d e t e r m i n e d  t o  t h e  a c c u r a c y  o f  a c o n s t a n t  by t h e  e x p r e s s i o n s  

q = ?(v  r  1)(4~o ln~0) -~, p 0 > ~  
(26) 

q = -  W4BolnB0, p 0 < a .  

The d e p e n d e n c e s  (26) a r e  shown in  F i g .  3 f o r  two v a l u e s  o f  t h e  c r i t i c a l  p r e s s u r e  ~.  The 
quantity q = ~oln ~oqy -I is plotted along the vertical axis. The effect of crack closure 
strongly distorts the display diagram as compared with a porous collector (the diagram for a 
porous collector with permeability factor y is displayed by the line 3). The flow in a 
cracked-porous collector with closed cracks can be considerably less than the flow in a por- 
ous collector. 

As follows from (26), q = ~/~ for Po < o. The asymptotic behavior of the display curve 
is sufficiently characteristic for cracked-porous collectors (see [8] for example). Let us 
note that this phenomenon is usually associated with the degassing of petroleum. 

The possibility of crack closure in a collector was noted in [i0]. Asymptotic methods 
in filtration problems were used in [Ii, 12]. 

The effect of crack closure in an elastically compressible cracked-porous collector 
should be taken into account in estimating petroleum reserves. We assume that the debit q = 
0.25 is determined for a face pressure of Po = 0.6 (the point A in Fig. 3) for a preliminary 
estimate of the promise of a deposit in a well; hence the well productivity factor is K = K~ = 
0.6. Meanwhile, as follows from Fig. 3, for open cracks K = K= ~ 0.8. The productivity is in 
agreement with the permeability k in the dimensionless writing used. High porosity m usually 
corresponds to high permeability. For instance, when using the power-law dependence k = m a 
[13] for a fixed medium, we obtain ml = 0.1m2. Therefore, the petroleum reserves will be 
substantially reduced. 

Therefore, it follows from the analysis presented above that the dependence of the 
structural-mechanical characteristics of cracked-porous materials on the fluid pressure 
actually results in substantially nonlinear behavior of the filtration fluid, even if the 
fluid is Newtonian. Neglecting this circumstance can cause significant errors in determin- 
ing the effective properties of a material by the display curve and, consequently, an error 
in estimating the real petroleum reserved in cracked-porous collectors. 

NOTATION 

p, fluid pressure; y, • effective piezoconductivity factors; T, relaxation time; o, 
compressive stress; r, x, coordinates; R, X, values of corresponding coordinates on the sup- 
ply contour; ~, ~ , dimensionless coordinates; ~, # , dimensionless pressures; ~, boundary value 
of the dimensionless pressure ~; %, r dimensionless parameters in (5); A, B, constant fac- 
tors in (6); ~, dimensionless internal variable; f(e, ~), function in (20), BI,B2, constants 
in (20); b, parameter in (21); ~, pressure factor in (25); q, dimensionless debit; K, produc- 
tivity factor; k, permeability; m, porosity, a, a parameter. 
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